A Short History of the World

H G Wells

Length Emails required
1,588 lines 40 (based on one per day)

Preview - part5 of40

==================================================================== The Age of Reptiles lasted, it is now guessed, eighty million years. Had any quasi-human intelligence been watching the world through that inconceivable length of time, how safe and eternal the sunshine and abundance must have seemed, how assured the wallowing prosperity of the dinosaurs and the flapping abundance of the flying lizards! And then the mysterious rhythms and accumulating forces of the universe began to turn against that quasi-eternal stability. That run of luck {36} for life was running out. Age by age, myriad of years after myriad of years, with halts no doubt and retrogressions, came a change towards hardship and extreme conditions, came great alterations of level and great redistributions of mountain and sea. We find one thing in the Record of the Rocks during the decadence of the long Mesozoic age of prosperity that is very significant of steadily sustained changes of condition, and that is a violent fluctuation of living forms and the appearance of new and strange species. Under the gathering threat of extinction the older orders and genera are displaying their utmost capacity for variation and adaptation. The Ammonites for example in these last pages of the Mesozoic chapter exhibit a multitude of fantastic forms. Under settled conditions there is no encouragement for novelties; they do not develop, they are suppressed; what is best adapted is already there. Under novel conditions it is the ordinary type that suffers, and the novelty that may have a better chance to survive and establish itself.... There comes a break in the Record of the Rocks that may represent several million years. There is a veil here still, over even the outline of the history of life. When it lifts again, the Age of Reptiles is at an end; the Dinosaurs, the Plesiosaurs and Ichthyosaurs, the Pterodactyls, the innumerable genera and species of Ammonite have all gone absolutely. In all their stupendous variety they have died out and left no descendants. The cold has killed them. All their final variations were insufficient; they had never hit upon survival conditions. The world had passed through a phase of extreme conditions beyond their powers of endurance, a slow and complete massacre of Mesozoic life has occurred, and we find now a new scene, a new and hardier flora, and a new and hardier fauna in possession of the world. It is still a bleak and impoverished scene with which this new volume of the book of life begins. The cycads and tropical conifers have given place very largely to trees that shed their leaves to avoid destruction by the snows of winter and to flowering plants and shrubs, and where there was formerly a profusion of reptiles, an increasing variety of birds and mammals is entering into their inheritance. {37} VIII THE AGE OF MAMMALS The opening of the next great period in the life of the earth, the Cainozoic period, was a period of upheaval and extreme volcanic activity. Now it was that the vast masses of the Alps and Himalayas and the mountain backbone of the Rockies and Andes were thrust up, and that the rude outlines of our present oceans and continents appeared. The map of the world begins to display a first dim resemblance to the map of to-day. It is estimated now that between forty and eighty million years have elapsed from the beginnings of the Cainozoic period to the present time. At the outset of the Cainozoic period the climate of the world was austere. It grew generally warmer until a fresh phase of great abundance was reached, after which conditions grew hard again and the earth passed into a series of extremely cold cycles, the Glacial Ages, from which apparently it is now slowly emerging. But we do not know sufficient of the causes of climatic change at present to forecast the possible fluctuations of climatic conditions that lie before us. We may be moving towards increasing sunshine or lapsing towards another glacial age; volcanic activity and the upheaval of mountain masses may be increasing or diminishing; we do not know; we lack sufficient science. With the opening of this period the grasses appear; for the first time there is pasture in the world; and with the full development of the once obscure mammalian type, appear a number of interesting grazing animals and of carnivorous types which prey upon these. At first these early mammals seem to differ only in a few characters from the great herbivorous and carnivorous reptiles that ages before had flourished and then vanished from the earth. A {38} careless observer might suppose that in this second long age of warmth and plenty that was now beginning, nature was merely repeating the first, with herbivorous and carnivorous mammals to parallel the herbivorous and carnivorous dinosaurs, with birds replacing pterodactyls and so on. But this would be an altogether superficial comparison. The variety of the universe is infinite and incessant; it progresses eternally; history never repeats itself and no parallels are precisely true. The differences between the life of the Cainozoic and Mesozoic periods are far profounder than the resemblances. [Illustration: A MAMMAL OF THE EARLY CAINOZOIC PERIOD] The most fundamental of all these differences lies in the mental life of the two periods. It arises essentially out of the continuing contact of parent and offspring which distinguishes mammalian and in a lesser degree bird life, from the life of the reptile. With very few exceptions the reptile abandons its egg to hatch alone. The young reptile has no knowledge whatever of its parent; its mental life, such as it is, begins and ends with its own experiences. {39} It may tolerate the existence of its fellows but it has no communication with them; it never imitates, never learns from them, is incapable of concerted action with them. Its life is that of an isolated individual. But with the suckling and cherishing of young which was distinctive of the new mammalian and avian strains arose the possibility of learning by imitation, of communication, by warning cries and other concerted action, of mutual control and instruction. A teachable type of life had come into the world. The earliest mammals of the Cainozoic period are but little superior in brain size to the more active carnivorous dinosaurs, but as we read on through the record towards modern times we find, in every tribe and race of the mammalian animals, a steady universal increase in brain capacity. For instance we find at a comparatively early stage that rhinoceros-like beasts appear. There is a creature, the Titanotherium, which lived in the earliest division of this period. It was probably very like a modern rhinoceros in its habits and needs. But its brain capacity was not one tenth that of its living successor. The earlier mammals probably parted from their offspring as soon as suckling was over, but, once the capacity for mutual understanding has arisen, the advantages of continuing the association are very great; and we presently find a number of mammalian species displaying the beginnings of a true social life and keeping together in herds, packs and flocks, watching each other, imitating each other, taking warning from each other's acts and cries. This is something that the world had not seen before among vertebrated animals. Reptiles and fish may no doubt be found in swarms and shoals; they have been hatched in quantities and similar conditions have kept them together, but in the case of the social and gregarious mammals the association arises not simply from a community of external forces, it is sustained by an inner impulse. They are not merely like one another and so found in the same places at the same times; they like one another and so they keep together. ==================================================================== {40} [Illustration: STENOMYLUS HITCHCOCKI--A GIRAFFE-CAMEL] [Illustration: SKELETON OF PROTOHIPPUS VENTICOLUS--EARLY HORSE] ==================================================================== This difference between the reptile world and the world of our human minds is one our sympathies seem unable to pass. We cannot conceive in ourselves the swift uncomplicated urgency of a reptile's instinctive motives, its appetites, fears and hates. We {41} cannot understand them in their simplicity because all our motives are complicated; our's are balances and resultants and not simple urgencies. But the mammals and birds have self-restraint and consideration for other individuals, a social appeal, a self-control that is, at its lower level, after our own fashion. We can in consequence establish relations with almost all sorts of them. When they suffer they utter cries and make movements that rouse our feelings. We can make understanding pets of them with a mutual recognition. They can be tamed to self-restraint towards us, domesticated and taught. [Illustration: COMPARATIVE SIZES OF BRAINS OF RHINOCEROS AND DINOCERAS] That unusual growth of brain which is the central fact of Cainozoic times marks a new communication and interdependence of individuals. It foreshadows the development of human societies of which we shall soon be telling. As the Cainozoic period unrolled, the resemblance of its flora and fauna to the plants and animals that inhabit the world to-day {42} increased. The big clumsy Uintatheres and Titanotheres, the Entelodonts and Hyracodons, big clumsy brutes like nothing living, disappeared. On the other hand a series of forms led up by steady degrees from grotesque and clumsy predecessors to the giraffes, camels, horses, elephants, deer, dogs and lions and tigers of the existing world. The evolution of the horse is particularly legible upon the geological record. We have a fairly complete series of forms from a small tapir-like ancestor in the early Cainozoic. Another line of development that has now been pieced together with some precision is that of the llamas and camels. {43} IX MONKEYS, APES AND SUB-MEN Naturalists divide the class _Mammalia_ into a number of orders. At the head of these is the order _Primates_, which includes the lemurs, the monkeys, apes and man. Their classification was based originally upon anatomical resemblances and took no account of any mental qualities. Now the past history of the Primates is one very difficult to decipher in the geological record. They are for the most part animals which live in forests like the lemurs and monkeys or in bare rocky places like the baboons. They are rarely drowned and covered up by sediment, nor are most of them very numerous species, and so they do not figure so largely among the fossils as the ancestors of the horses, camels and so forth do. But we know that quite early in the Cainozoic period, that is to say some forty million years ago or so, primitive monkeys and lemuroid creatures had appeared, poorer in brain and not so specialized as their later successors. The great world summer of the middle Cainozoic period drew at last to an end. It was to follow those other two great summers in the history of life, the summer of the Coal Swamps and the vast summer of the Age of Reptiles. Once more the earth spun towards an ice age. The world chilled, grew milder for a time and chilled again. In the warm past hippopotami had wallowed through a lush sub-tropical vegetation, and a tremendous tiger with fangs like sabres, the sabre-toothed tiger, had hunted its prey where now the journalists of Fleet Street go to and fro. Now came a bleaker age and still bleaker ages. A great weeding and extinction of species occurred. A woolly rhinoceros, adapted to a cold climate, and the mammoth, a big woolly cousin of the elephants, the Arctic musk ox and the reindeer passed across the scene. Then century by century the Arctic ice cap, the wintry death of the great Ice Age, crept {44} southward. In England it came almost down to the Thames, in America it reached Ohio. There would be warmer spells of a few thousand years and relapses towards a bitterer cold. [Illustration: A MAMMOTH] Geologists talk of these wintry phases as the First, Second, Third and Fourth Glacial Ages, and of the interludes as Interglacial periods. We live to-day in a world that is still impoverished and scarred by that terrible winter. The First Glacial Age was coming on 600,000 years ago; the Fourth Glacial Age reached its bitterest some fifty thousand years ago. And it was amidst the snows of this long universal winter that the first man-like beings lived upon our planet. By the middle Cainozoic period there have appeared various apes with many quasi-human attributes of the jaws and leg bones, but it is only as we approach these Glacial Ages that we find traces of creatures that we can speak of as "almost human." These traces are not bones but implements. In Europe, in deposits of this period, between half a million and a million years old, we find flints {45} and stones that have evidently been chipped intentionally by some handy creature desirous of hammering, scraping or fighting with the sharpened edge. These things have been called "Eoliths" (dawn stones). In Europe there are no bones nor other remains of the creature which made these objects, simply the objects themselves. For all the certainty we have it may have been some entirely un-human but intelligent monkey. But at Trinil in Java, in accumulations of this age, a piece of a skull and various teeth and bones have been found of a sort of ape man, with a brain case bigger than that of any living apes, which seems to have walked erect. This creature is now called _Pithecanthropus erectus_, the walking ape man, and the little trayful of its bones is the only help our imaginations have as yet in figuring to, ourselves the makers of the Eoliths. [Illustration: FLINT IMPLEMENTS FOUND IN PILTDOWN REGION] It is not until we come to sands that are almost a quarter of a million years old that we find any other particle of a sub-human being. But there are plenty of implements, and they are steadily improving in quality as we read on through the record. They are no longer clumsy Eoliths; they are now shapely instruments made with considerable skill. _And they are much bigger than the similar implements afterwards made by true man._ Then, in a sandpit at Heidelberg, appears a single quasi-human jaw-bone, a clumsy jaw-bone, absolutely chinless, far heavier than a true human jaw-bone and narrower, so that it is improbable the creature's tongue could have moved about for articulate speech. On the strength of this jaw-bone, scientific men suppose this creature to have been a heavy, almost human monster, possibly with huge limbs and hands, possibly with a thick felt of hair, and they call it the Heidelberg Man. {46} This jaw-bone is, I think, one of the most tormenting objects in the world to our human curiosity. To see it is like looking through a defective glass into the past and catching just one blurred and tantalizing glimpse of this Thing, shambling through the bleak wilderness, clambering to avoid the sabre-toothed tiger, watching the woolly rhinoceros in the woods. Then before we can scrutinize the monster, he vanishes. Yet the soil is littered abundantly with the indestructible implements he chipped out for his uses.